Birleşme anında iki nötron yıldızı. 3 boyutlu bilgisayar simülasyonlarındaki son gelişmeler, nötron yıldızı birleşmelerinin ardından yayılan ışığa ilişkin bilgiler sağladı. Bu simülasyonlar, demirden daha ağır elementlerin kökeninin anlaşılmasında çok önemlidir. Kredi bilgileri: Dana Berry SkyWorks Digital, Inc.

Gelişmiş 3 boyutlu bilgisayar simülasyonları, gerçek ışık gözlemlerini yakından yansıtmıştır. nötron yıldızı birleşmeler, ağır elementlerin kökenine dair anlayışımızı geliştiriyor.

İki nötron yıldızının birleşmesinden sonra yayılan ışığın gelişmiş yeni üç boyutlu (3 boyutlu) bilgisayar simülasyonu, gözlemlenen bir kilonovaya benzer bir spektroskopik özellikler dizisi üretti. GSI/FAIR bilim insanı ve yayının baş yazarı Luke J. Shingles, “Simülasyonlarımız ile kilonova AT2017gfo’nun gözlemi arasındaki benzeri görülmemiş uyum, patlamada ve sonrasında neler olduğunu genel olarak anladığımızı gösteriyor” diyor. Astrofizik Günlük Mektupları. Her ikisini de birleştiren son gözlemler yerçekimi dalgaları ve görünür ışık, bu element üretiminin ana alanı olarak nötron yıldızı birleşmelerine işaret etti.

Işınımsal Transfer Simülasyonlarının Arkasındaki Mekanizma

Nötron yıldızı birleşmesinden çıkan malzeme içindeki elektronlar, iyonlar ve fotonlar arasındaki etkileşimler, teleskoplarla görebildiğimiz ışığı belirler. Bu süreçler ve yayılan ışık, ışınım aktarımının bilgisayar simülasyonları ile modellenebilir. Araştırmacılar yakın zamanda ilk kez, nötron-yıldız birleşmesini, nötron yakalama nükleosentezini, radyoaktif bozunmayla biriken enerjiyi ve ağır elementlerin on milyonlarca atomik geçişiyle ışınım transferini tutarlı bir şekilde takip eden üç boyutlu bir simülasyon ürettiler. .

3 boyutlu bir model olduğundan, gözlemlenen ışık herhangi bir izleme yönü için tahmin edilebilir. İki nötron yıldızının yörünge düzlemine neredeyse dik olarak bakıldığında (kilonova AT2017gfo için gözlemsel kanıtların gösterdiği gibi), model, AT2017gfo için gözlemlenenlere oldukça benzeyen bir dizi spektral dağılım öngörüyor. Shingles, “Bu alandaki araştırmalar, esas olarak nötron yıldızı birleşmelerindeki hızlı nötron yakalama süreciyle üretilen demirden daha ağır elementlerin (platin ve altın gibi) kökenlerini anlamamıza yardımcı olacak” diyor.

Kilonova 3D Simülasyon

Kilonova 3D simülasyonunun sonucu. Kredi bilgileri: Luke J. Shingles ve diğerleri 2023 ApJL 954 L41

Kilonova: Patlama ve Sonrası

Demirden daha ağır elementlerin yaklaşık yarısı, iki nötron yıldızının birbiriyle birleşmesiyle elde edildiği gibi, aşırı sıcaklıkların ve nötron yoğunluklarının olduğu bir ortamda üretilir. Sonunda birbirlerine doğru spiral çizip birleştiklerinde, ortaya çıkan patlama, bir dizi nötron yakalama ve beta bozunması yoluyla kararsız, nötron açısından zengin ağır çekirdekler üretmek için uygun koşullardaki maddenin fırlatılmasına yol açar. Bu çekirdekler kararlı hale gelinceye kadar bozunarak, yaklaşık bir hafta içinde hızla sönen parlak bir ışık emisyonu olan patlayıcı bir ‘kilonova’ geçişine güç veren enerjiyi serbest bırakır.

3 boyutlu simülasyon, maddenin yüksek yoğunluklardaki davranışı, kararsız ağır çekirdeklerin özellikleri ve atom-Ağır elementlerin hafif etkileşimleri. Spektral dağılımın değişme hızının hesaplanması ve geç zamanlarda dışarı atılan malzemenin tanımlanması gibi başka zorluklar da devam etmektedir.

Bu alandaki gelecekteki ilerlemeler, spektrumlardaki özellikleri tahmin etme ve anlama konusundaki hassasiyetimizi artıracak ve ağır elementlerin sentezlendiği koşullar hakkındaki anlayışımızı daha da ileriye taşıyacaktır. Bu modellerin temel bileşeni, FAIR tesisi tarafından sağlanacak olan yüksek kaliteli atom ve nükleer deneysel verilerdir.

Referans: Luke J. Shingles, Christine E. Collins, Vimal Vijayan, Andreas Flörs, Oliver Just, Gerrit Leck, Zewei Xiong, Andreas Bauswein, Gabriel Martínez- tarafından yazılan “Kilonovalar için Kendinden Tutarlı 3D Işınım Transferi: Birleşme Simülasyonlarından Yönlü Spektrumlar” Pinedo ve Stuart A. Sim, 8 Eylül 2023, Astrofizik Günlük Mektupları.
DOI: 10.3847/2041-8213/acf29a



uzay-2